This article was downloaded by: On: *28 January 2011* Access details: *Access Details: Free Access* Publisher *Taylor & Francis* Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Physics and Chemistry of Liquids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713646857

Surface tension and density of binary mixtures of monoalcohols, water and acetonitrile: equation of correlation of the surface tension R. Belda Maximino^a

^a Faculty of Pharmacy, Department of Earth Physics and Thermodynamics, University of Valencia, Burjassot, Valencia, Spain

To cite this Article Belda Maximino, R.(2009) 'Surface tension and density of binary mixtures of monoalcohols, water and acetonitrile: equation of correlation of the surface tension', Physics and Chemistry of Liquids, 47: 5, 475 – 486 **To link to this Article: DOI:** 10.1080/00319100802241657

URL: http://dx.doi.org/10.1080/00319100802241657

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doese should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Surface tension and density of binary mixtures of monoalcohols, water and acetonitrile: equation of correlation of the surface tension

R. Belda Maximino*

Faculty of Pharmacy, Department of Earth Physics and Thermodynamics, University of Valencia, Burjassot, Valencia, Spain

(Received 7 May 2008; final version received 13 May 2008)

Measurements of the surface tension (σ) and density (ρ) of binary mixtures of monoalcohols, water and acetonitrile at 298.15 K and at atmospheric pressure, as a function of mole fraction (x) have been made. The experimental values of the deviation of surface tension and the excess of molar volume ($\Delta\sigma$, V^E) have been correlated by the Redlich–Kister equation. An empirical correlation equation is presented for the study of the surface tension of these mixtures, and comparisons are made of the experimental values of surface tension *versus* those obtained with the correlation equation and with other models of correlation. Finally, with the purpose of corroborating the validity of the correlation equation, the latter is applied to other reference binary mixtures.

Keywords: surface tension; binary mixtures; monoalcohols; water; acetonitrile; correlation equation

1. Introduction

Alcohols, either alone or in solutions (water, acetonitrile), are very widely used in the chemical, pharmaceutical and cosmetic industries, etc. [1–7].

In relation to the physico-chemical properties of these systems, surface tension and density should be mentioned, among others. Knowledge of both magnitudes is important in order to understand the molecular interactions among the components of the mixtures, and thus optimise their application to processes such as heat transfer, mass transfer, distillation, solubility, absorption, etc. [8–21].

The surface tension of liquids is determined by cohesion forces among their molecules, as a result of which the theoretical description of surface tension is complex. Over the years, a number of theoretical, empirical and semi-empirical models have been developed that are not always applicable to all types of mixtures [22].

In the present article, with the purpose of continuing and expanding the study of the physico-chemical properties of the systems (monoalcohols + water) [23] and [24], a description is made of the experimental results of surface tension (σ) and density (ρ) of binary mixtures of monoalcohols, water and acetonitrile at 298.15 K and at atmospheric pressure.

^{*}Email: rafael.belda-maximino@uv.es

A correlation equation is presented for studying the surface tension of these mixtures, and comparisons are made of the experimental values of surface tension *versus* those calculated by means of the following empirical and theoretical equations. Finally, with the purpose of corroborating the validity of the correlation equation, the latter is applied to other reference binary mixtures.

2. Correlation equations and model

The present study describes three correlation equations. The first is based on the linear behaviour of the binary mixtures

$$\sigma = x_1 \cdot \sigma_1 + x_2 \cdot \sigma_2,\tag{1}$$

where σ is the surface tension of the mixture, σ_1 and σ_2 the surface tensions of the pure components, and x_1 , x_2 are the mole fractions of the components of the mixture. By expressing x_1 as a function of x_2 , we have:

$$\sigma = \sigma_1 - (\sigma_1 - \sigma_2) \cdot x_2, \tag{2}$$

in which a correcting factor is introduced associated to the mole fraction x_2 , to yield the following expression:

$$\sigma = \sigma_1 - (\sigma_1 - \sigma_2) \cdot x_2 \cdot \left(\frac{1 + m_1 \cdot (1 - x_2)}{1 + m_2 \cdot (1 - x_2)}\right),\tag{3}$$

which satisfies the conditions of the experiment, i.e., if:

$$x_2 = 0 \rightarrow \sigma = \sigma_1,$$

$$x_2 = 1 \rightarrow \sigma = \sigma_2,$$

and where m_1 and m_2 are parameters to be fitted. When $m_1 = m_2 = 0$ the equation respond to linear behaviour.

The second of the equations [25] is:

$$\sigma = \sigma_1 \cdot x_1^3 + a_1 \cdot x_1^2 \cdot x_2 + a_2 \cdot x_1 \cdot x_2^2 + \sigma_2 \cdot x_2^3, \tag{4}$$

which also satisfies the conditions of the experimental setting and where a_1 and a_2 are the parameters to fitting.

The third of the equations [26] is:

$$\sigma = \sigma_1 - (\sigma_1 - \sigma_2) \cdot x_2 - \left(\frac{A}{2RT}\right) \cdot (\sigma_1 - \sigma_2)^2 \cdot x_2 \cdot (1 - x_2), \tag{5}$$

where A is the partial surface area of the mixture in centimetre square per gram mole, given by the expressions:

$$A = \left(\frac{A_1 + A_2}{2}\right)$$
 and $A_i = (V_i)^{2/3} \cdot (N_0)^{1/3}$

where V_i is the molar volume of the pure component *i*, and N_0 is the Avogadro number.

In all cases, we used as estimation criterion the standard deviation S, defined by:

$$S = \sqrt{\frac{\sum_{i=1}^{n} \left\{\sigma_{\exp} - \sigma_{cal}\right\}_{i}^{2}}{n-k}},$$
(6)

where n is the number of points of the sample and k the number of parameters of the fitting equation.

3. Experimental section

The substances used in the mixtures were: methanol, ethanol, 1-propanol and acetonitrile, supplied by Aldrich, with a mass purity of >99.5% in all cases. Water used was distilled and deionised.

The mass of the mixtures was measured using a Mettler AT201 balance (repeatability $\pm 1 \times 10^{-5}$ g), and the uncertainty in the mole fraction was estimated to be $< 10^{-4}$.

The measurements of the densities of the pure components and the binary mixtures was carried out using an Anton-Paar densitometer (model DMA 4500) with an uncertainly of $\pm 10^{-5}$ g cm⁻³. The temperature of the measuring cell was maintained at 298.15 ± 0.01 K using a Grant thermostatic water bath.

The surface tensions of the pure liquids and their corresponding mixtures were measured with a thermostatted (within $\pm 0.05 \text{ K}$) drop volume tensiometer (LAUDA TVT1) with an uncertainty of $10^{-2} \text{ mN m}^{-1}$. The detailed instrument design and experimental procedure have been described elsewhere [8].

Binary mixtures were prepared and distributed into three airtight containers. The measurements (in triplicate) in all cases showed deviation uncertainties of <1%.

4. Results and discussion

Table 1 shows the results of the experimental measurements of surface tension and density of the pure components, and are compared with literature values.

The experimental results for surface tension (σ) and density (ρ) of the mixtures at 298.15 K and at atmospheric pressure, as a function of the mole fraction (x_2) are shown in Table 2.

The deviation of surface tension was defined by:

$$\Delta \sigma = \sigma - x_1 \cdot \sigma_1 - x_2 \cdot \sigma_2. \tag{7}$$

The excess molar volume $V^{\rm E}$ is defined by:

$$V^{\rm E} = \frac{M_1 \cdot x_1 + M_2 \cdot x_2}{\rho} - \frac{M_1 \cdot x_1}{\rho_1} - \frac{M_2 \cdot x_2}{\rho_2},\tag{8}$$

where M_1 , M_2 , ρ_1 and ρ_2 are the molecular weights and densities of the pure components, respectively.

	σ (mN	Mm^{-1})	$ ho (\mathrm{g}\mathrm{cm}^{-3})$	
Compound	This work	Literature	This work	Literature
Water	72.08	71.97 [17] 71.8 [18]	0.99702	0.99704 [7] 0.9970 [11] 0.997048 [12]
Acetonitrile	28.64	28.75 [19] 28.59 [20]	0.77673	0.77663 [15] 0.7821 [16]
Methanol	22.14	22.50 [19] 22.95 [21]	0.78658	0.7872 [14] 0.7866 [11] 0.78635 [12]
Ethanol	21.72	21.8 [19] 21.82 [21]	0.78513	0.78493 [7] 0.7851 [11] 0.7873 [14]
1-Propanol	23.37	23.34 [19] 23.31 [21]	0.79958	0.8020 [14] 0.799353 [12]

Table 1. Surface tension and density of the pure components at $298.15\,\mathrm{K}$ and at atmospheric pressure.

Table 2. Surface tension and density for the indicated mixtures at $298.15 \,\mathrm{K}$ and at atmospheric pressure.

<i>x</i> ₂	$\sigma ({\rm mN}{\rm m}^{-1})$	$\rho (\text{g cm}^{-3})$	<i>x</i> ₂	$\sigma ({\rm mN}{\rm m}^{-1})$	$\rho (\text{g cm}^{-3})$
	Water (1) \pm methano	1 (2)		Water (1) \pm ethanol	(2)
0.0000	72.08	0.99702	0.0000	72.08	0.99702
0.0272	63.52	0.99013	0.0143	60.68	0.99072
0.0588	56.21	0.98221	0.0372	50.33	0.98075
0.0942	50.52	0.97347	0.0995	38.22	0.96002
0.1433	44.98	0.96154	0.2007	31.28	0.93121
0.1942	41.45	0.94942	0.2988	28.28	0.90628
0.2727	37.12	0.93121	0.3996	26.48	0.88347
0.3601	33.35	0.91160	0.5009	25.25	0.86225
0.4576	29.96	0.89049	0.5993	24.36	0.84405
0.5676	27.48	0.86763	0.7004	23.63	0.82751
0.6923	25.64	0.84287	0.7991	23.04	0.81298
0.8351	24.06	0.81593	0.9007	22.52	0.79927
1.0000	22.14	0.78658	1.0000	21.72	0.78513
	Water $(1) \pm 1$ -propand	ol (2)	V	Water (1) \pm acetonitri	le (2)
0.0000	72.08	0.99702	0.0000	72.08	0.99702
0.0477	64.26	0.97251	0.0133	62.18	0.99107
0.1110	54.19	0.94501	0.0327	53.10	0.98359
0.1924	42.31	0.91617	0.0732	45.09	0.96654
0.2703	29.28	0.89380	0.1546	38.71	0.93563
0.3459	25.64	0.87582	0.2264	34.27	0.91236
0.3999	25.52	0.86480	0.3007	32.64	0.89032
0.4999	25.41	0.84762	0.3969	31.34	0.86605
0.5882	25.23	0.83523	0.5060	30.41	0.84254
0.6897	24.20	0.82355	0.6371	29.69	0.81907
0.7874	23.85	0.81435	0.7980	29.11	0.79648
0.8861	23.57	0.80671	0.8929	28.87	0.78596
1.0000	23.32	0.79958	1.0000	28.64	0.77673

(continued)

<i>x</i> ₂	$\sigma ({\rm mNm^{-1}})$	$\rho (\text{g cm}^{-3})$	<i>x</i> ₂	$\sigma \ (mN m^{-1})$	$ ho (g cm^{-3})$
	Acetonitrile $(1) \pm$ methan	nol (2)	Ac	etonitrile $(1) \pm$ ethan	nol (2)
0.0000	28.64	0.77673	0.0000	28.64	0.77673
0.0934	28.35	0.77774	0.0704	27.99	0.77719
0.1514	28.17	0.77851	0.1325	27.46	0.77766
0.2296	27.85	0.77961	0.2005	26.90	0.77825
0.2950	27.52	0.78052	0.2961	26.13	0.77920
0.3648	27.11	0.78147	0.3762	25.51	0.78005
0.4267	26.72	0.78228	0.4438	25.02	0.78082
0.5163	26.10	0.78342	0.5092	24.56	0.78153
0.6391	25.19	0.78490	0.6004	23.97	0.78252
0.7215	24.55	0.78590	0.7054	23.33	0.78354
0.8014	23.91	0.78670	0.8009	22.79	0.78430
0.9125	22.94	0.78718	0.9031	22.21	0.78486
1.0000	22.14	0.78658	1.0000	21.72	0.78513
	Acetonitrile $(1) \pm 1$ -propa	nol (2)			
0.0000	28.64	0.77673			
0.0713	27.89	0.77848			
0.1414	27.24	0.78029			
0.2296	26.54	0.78255			
0.2950	26.08	0.78426			
0.3648	25.64	0.78606			
0.4367	25.25	0.78792			
0.5163	24.87	0.78988			
0.6091	24.49	0.79207			
0.7215	24.10	0.79451			
0.8014	23.84	0.79609			
0.9125	23.54	0.79810			
1.0000	23.37	0.79958			

Table 2. Continued.

For each mixture, the deviation of surface tension $\Delta \sigma$ and the V^{E} were fitted by the equation of Redlich–Kister [27]:

$$Y = x_1 \cdot x_2 \sum_{i=1}^{n} A_i \cdot (x_1 - x_2)^{i-1},$$
(9)

where $Y = \Delta \sigma$ or V^{E} .

The coefficients A_i of these fits are shown in Tables 3 and 4, and have been used to obtain the fitting curves, which are shown as a continuous line in Figures 1 and 2. For increased clarity, each have been divided into two: Figure 1(a), (b) and Figure 2(a), (b).

4.1. Excess molar volumes

Figure 1 shows the values of V^{E} to be negative for the mixtures of water + (methanol, ethanol, 1-propanol, acetonitrile) and (acetonitrile + methanol), and positive for the mixture of (acetonitrile + 1-propanol), while the mixture of (acetonitrile + ethanol) shows both positive and negative values.

		V	$\mathcal{E}_{M} (cm^{3} mol^{-1})$		
System	A_1	A_2	A_3	A_4	S
Water + methanol Water + ethanol Water + 1-propanol Water + acetonitrile Acetonitrile + methanol Acetonitrile + 1-propanol	$\begin{array}{r} -1.57120 \\ -4.89340 \\ -2.74390 \\ -1.81830 \\ -0.52469 \\ -0.08284 \\ 0.21277 \end{array}$	$\begin{array}{r} 0.34441 \\ 0.92075 \\ 1.01730 \\ 1.56250 \\ -0.27150 \\ -0.40344 \\ -0.35310 \end{array}$	$\begin{array}{r} -0.11292 \\ -0.33934 \\ -1.18840 \\ 0.03971 \\ -0.21941 \\ -0.03175 \\ 0.08809 \end{array}$	$\begin{array}{r} -0.27296\\ -2.14530\\ 0.67261\\ 0.42113\\ -0.41391\\ 0.06262\\ 0.10761\end{array}$	0.0179 0.0263 0.0110 0.0393 0.0062 0.0381 0.0153

Table 3. Redlich–Kister coefficients A_i and standard deviations S of Equations (9) and (6) for V^E in the investigated system.

Table 4. Redlich–Kister coefficients A_i and standard deviations S of Equations (9) and (6) for $\Delta \sigma$ in the investigated system.

			$\Delta\sigma$ (m)	$N m^{-1}$)		
System	A_1	A_2	A_3	A_4	A_5	S
Water + methanol	-74.9190	43.1810	-0.2624	71.8010	-117.9700	0.0041
Water + ethanol	-87.4420	38.8820	-20.0610	249.6400	-269.1200	0.1042
Water + 1-propanol	-89.9460	59.5550	-52.6780	205.2900	-203.5100	0.0482
Water + acetonitrile	-81.3940	32.0790	3.4851	226.4100	-271.4200	0.1243
Acetonitrile + methanol	3.2766	-1.1622	1.2629	0.9622	-1.7695	0.0075
Acetonitrile + ethanol	-2.2271	0.1904	0.7889	-0.0010	-1.1475	0.0092
Acetonitrile + 1-propanol	-4.2316	1.4302	-0.2252	-0.3799	-0.5023	0.0042

Figure 1. Plot of V^{E} against mole fraction x_{2} at 298.15 K and at atmospheric pressure, for the mixtures: (a) water with: \circ , methanol; \Box , ethanol; \diamond , 1-propanol; + acetonitrile; and (b) acetonitrile with: \circ , methanol; \Box , ethanol; \diamond , 1-propanol. The points are measured, and the lines are calculated from Equation (9), using the parameters in Table 3.

Figure 2. Plot of $\Delta\sigma$ against mole fraction x_2 at 298.15 K and at atmospheric pressure, for the mixtures: (a) water with: \circ , methanol; \Box , ethanol; \diamond , 1-propanol; +, acetonitrile; and (b) acetonitrile with: \circ , methanol; \Box , ethanol; \diamond , 1-propanol. The points are measured, and the lines are calculated from Equation (9), using the parameters in Table 4.

The minimum V^{E} corresponds to the mixture (water + ethanol) and the maximum V^{E} to the mixture (acetonitrile + 1-propanol).

The observed V^{E} values are the resultant of chemical and physical forces and they may be broadly recognised as: (a) specific interactions appearing in the mixture between dissimilar molecules by dipole–dipole; (b) specific interactions appearing in the mixture between dissimilar molecules by electron donor–acceptor complexes; (c) the breaking of liquid order on mixing with the second component; and (d) non-specific physical interactions and unfavourable interactions between unlike molecules. Generally, the first two factors contribute to the diminishing of volume and the latter two factors contribute to the expansion the volume [28]. From Table 2 and Figure 1, it is clear that the volume reduction factors are preponderant for the mixtures water + (methanol, etanol, 1propanol, acetonitrile) and (acetonotrile + metanol).

The positive values of V^{E} of the mixture (acetonitrile + 1-propanol) may be explained by the dominance of H bond rupture in 1-propanol over the dipole–dipole interactions between 1-propanol and the acetonitrile molecules, and by the expansion processes that occur in these mixtures.

Comparisons have been made of the experimental values of $V^{\rm E}$ and those found in the literature [12,24,29]. For the mixtures of (monoalcohols + water), the values are always negative and with similar point distributions – exhibiting minimum values that in all cases are around mole fraction $x_2 = 0.5$. In the case of the mixture (methanol + water), the value is close to $-1 \,\mathrm{cm}^3 \,\mathrm{mol}^{-1}$. In the system (ethanol + water), the value is $-1.2 \,\mathrm{cm}^3 \,\mathrm{mol}^{-1}$ according to our study and [24], *versus* $-1.1 \,\mathrm{cm}^3 \,\mathrm{mol}^{-1}$ according to [12]. The reason for this difference could be the important volatility of ethanol. In the system (1-propanol + water), the values in all cases are close to $-0.7 \,\mathrm{cm}^3 \,\mathrm{mol}^{-1}$.

In the mixture (acetonitrile + methanol), the values are always negative and with similar point distributions – exhibiting a minimum around mole fraction $x_2 = 0.7$ of $-0.16 \text{ cm}^3 \text{ mol}^{-1}$. In the mixture (acetonitrile + ethanol) the values are both positive

and negative, with similar point distributions and exhibiting a relative maximum at mole fraction $x_2 = 0.2$ of $0.018 \text{ cm}^3 \text{ mol}^{-1}$ and a relative minimum at mole fraction $x_2 = 0.8$ of $-0.07 \text{ cm}^3 \text{ mol}^{-1}$.

4.2. Excess surface tension

Figure 2 shows that $(\Delta \sigma)$ is positive for the system (acetonitrile + methanol) and negative for the rest of the mixtures studied.

The mixtures in which $(\Delta \sigma)$ is negative reflect depletion of one of the components, that with the greatest surface tension, which in the systems water + (methanol, ethanol, 1-propanol, acetonitrile) corresponds to water, while in the systems acetonitrile + (methanol, ethanol, 1-propanol) it corresponds to acetonitrile, at the liquid-vapour interface.

In the mixtures of water + (methanol, ethanol, 1-propanol), $(\Delta \sigma)$ becomes more negative as the length of the studied alcohol chain increases. The same occurs with the mixtures of acetonitrile + (ethanol, 1-propanol).

In the mixture (acetonitrile + methanol), $(\Delta \sigma)$ is positive, which indicates enrichment of the component with greater surface tension (corresponding to acetonitrile in this system).

Comparisons have been made of the experimental values of (σ) with those of the literature [30–32] – revealing similar point distributions, though in the mixtures (water + ethanol), we found that in the interval $x_2 = (0.2, 0.3)$, the differences exceed by more than 1 mN m⁻¹ those reported in [32] and by 0.8 mN m⁻¹ those reported in [33]. These discrepancies could be the result of substance loss, since ethanol is very volatile. However, in the system (water + 1-propanol), the differences with respect to [33] and [34] are minimal and less than 1.5%.

Figure 2(a) and the data in Table 4 indicate that for mixtures of water + (methanol, ethanol, 1-propanol, acetonitrile), the fitting of $(\Delta \sigma)$ as a function of mole fraction (x_2) via Equation (9), with five parameters, yields standard deviation values S that exceed 7% on average.

These systems, as most of the cases found in the industrial setting, involve the difficulty posed by non-linear mixture behaviour. As a result, rigorous data must be available, with models capable of providing a reliable estimation of the surface tension behaviour of mixtures.

For this motive and with the purpose of studying correlation the surface tension σ of the binary mixtures of monoalcohols, water and acetonitrile as a function of the mole fraction (x_2), Equation (3) is presented and comparisons are made of the experimental surface tension (σ) versus the values obtained with Equations (3)–(5).

The results of the fits made with Equations (3)–(5) are provided in Table 5.

From Table 5 it is deduced that out of Equations (3)–(5), the one offering the best results is Equation (3), except in the case of the system (acetonitrile+ethanol), where Equation (4) yields better results than Equation (3). The poorest results correspond to Equation (5).

From the results reported in Table 5, and in order to corroborate the validity of Equation (3), we obtained 23 files from a recent literature review [17,35–38] (Table 6) studying the surface tension of different binary mixtures of liquids at atmospheric pressure and over different temperature ranges. Although the number of files is not extensive, they

	Ec	quation (3)		Equation (4)			Equation (5)
System	m_1	<i>m</i> ₂	S	a_1	a_2	S	S
Water + methanol Water + ethanol Water + 1-propanol Water + acetonitrile Acetonitrile + methanol Acetonitrile + ethanol	$\begin{array}{r} -0.06656 \\ -0.03990 \\ -0.02794 \\ 0.00413 \\ -0.80897 \\ 0.12205 \end{array}$	$\begin{array}{r} -0.87362 \\ -0.95321 \\ -0.99011 \\ -0.95230 \\ -0.39491 \\ -0.16548 \end{array}$	0.0089 0.0003 0.0407 0.0120 0.0006 0.0004	$ \begin{array}{r} 17.603 \\ -37.762 \\ -46.333 \\ -22.553 \\ 83.644 \\ 76.626 \\ \end{array} $	106.280 118.410 125.680 138.640 74.465 70.111	0.0659 0.1608 0.1821 0.1349 0.0007 0.0004	6.0312 9.7753 11.3748 10.7120 0.9284 0.0367
Acetonitrile + 1-propanol	0.15603	-0.46180	0.0004	75.060	72.394	0.0007	0.5069

Table 5. Coefficients m_1 , m_2 and a_1 , a_2 obtained from the fits of Equations (3) and (4), with the corresponding standard deviations S calculated by Equation (6), including those obtained for Equation (5), for the systems analysed.

Table 6. Components of the mixtures used in the reference files.

	Mixture		
File	Component (1) + Component (2)	<i>T</i> (K)	Ref.
1	Water + 1,2-butanediol	298.15	[17]
2	Water $+ 1,3$ -butanediol	298.15	[17]
3	Water $+ 1,4$ -butanediol	298.15	[17]
4	Water $+2,3$ -butanediol	298.15	[17]
5	Cyclohexane + heptane	297.82	[35]
6	Toluene + propanone	297.82	[35]
7	Cyclohexane + propanone	297.82	[35]
8	$Ar + N_2$	83.82	[36]
9	$O_2 + N_2$	83.82	[36]
10	CH_4-N_2	91	[36]
11	CH ₄ -CO	91	[36]
12	Etanol + octane	298.15	[37]
13	1-Propanol + octane	298.15	[37]
14	1-Butanol + octane	298.15	[37]
15	1-Pentanol + octane	298.15	[37]
16	1-Hexanol + octane	298.15	[37]
17	1-Heptanol + octane	298.15	[37]
18	1-Octanol + octane	298.15	[37]
19	Tetrahydrofuran + 1-hexanol	298.15	[38]
20	Tetrahydrofuran + 1-heptanol	298.15	[38]
21	1-Octanol + tetrahydrofuran	298.15	[38]
22	1-Nonanol + tetrahydrofuran	298.15	[38]
23	1-Decanol + tetrahydrofuran	298.15	[38]

contain the four different types of distributions $\sigma = f(x_2)$ that may be found in studies of this kind and which are shown in Figure 3 – though for improved clarity the latter has been divided into four parts: Figure 3(a)–(d). The distributions represented in the Figure 3(a)–(d)) have been fitted by Equation (3).

The files indicated in Table 6 have been fitted by means of Equations (3)–(5), and the results of these fits are reported in Table 7. In Table 7, the values *S* of Equation (5) could not be completed in 16 of the files, due to missing densities of the corresponding mixtures.

Figure 3. Distribution of points $\sigma = f(x_2)$ corresponding to the files: (a) (1-nonanol + tetrahydrofuran), (b) (cyclohexane + propanone), (c) (water + 1,2-butanediol), (d) (toluene + propanone), fitted by Equation (3).

From Table 7 it is deduced that Equations (3) and (4) yield better results than Equation (5). In turn, it is seen that in 8 of the 23 files analysed, the values of the standard deviation S for Equation (4) are better than for Equation (3). However, the mean values of the deviation standard \overline{S} for Equation (8) are (807% and 4844%) better than for Equations (4) and (5), respectively.

5. Conclusions

From the current study it is deduced that the negative values of $V^{\rm E}$ correspond to the mixtures of water + (methanol, ethanol, 1-propanol, acetonitrile) and (acetonitrile + methanol), while the positive values correspond to the system (acetonitrile + 1-propanol). The mixture (acetonitrile + ethanol) in turn presents both positive and negative values.

The minimum (V^E) corresponds to the mixture (water + ethanol), and the maximum to the mixture (acetonitrile + 1-propanol).

		S	
File	Equation (3)	Equation (4)	Equation (5)
1	0.0002	0.2062	_
2	0.0010	0.1127	_
3	0.0043	0.0630	_
4	0.0080	0.1320	_
5	0.0017	0.0015	_
6	0.0026	0.0020	_
7	0.0019	0.0022	_
8	0.0037	0.0063	_
9	0.0016	0.0012	_
10	0.0170	0.0172	_
11	0.0100	0.0097	_
12	0.0010	0.0020	0.1151
13	0.0007	0.0021	0.1607
14	0.0010	0.0004	0.1358
15	0.0019	0.0004	0.1353
16	0.0012	0.0003	0.1025
17	0.0008	0.0005	0.0923
18	0.0007	0.0005	0.1925
19	0.0005	0.0007	_
20	0.0005	0.0007	_
21	0.0007	0.0009	_
22	0.0005	0.0008	_
23	0.0010	0.0010	
		\bar{S}	
	0.0027	0.0245	0.1335

Table 7. Standard deviations S calculated by Equation (6), and mean standard deviations \overline{S} for the reference files.

In turn, the values of $(\Delta \sigma)$ are positive for the mixture (acetonitrile + methanol) and negative for the rest of the mixtures analysed.

In the mixtures of water + (methanol, ethanol, 1-propanol), $(\Delta \sigma)$ becomes more negative as the length of the alcohol chain is increased (C_1-C_3) . The same applies to the mixtures of acetonitrile + (ethanol, 1-propanol).

Regarding the study of surface tension, it is shown that for the mixtures of monoalcohols, water and acetonitrile, Equation (3) yields better results for the standard deviation S than Equations (4) and (5), except in the case of the system (acetonitrile + ethanol), where Equation (4) offers better results than Equation (3). In turn, Equation (4) yields better results than Equation (5).

In all the reference files, Equations (3) and (4) yield better results than Equation (5), and in 15 of them Equation (3) offers better results than Equation (4).

In addition, for both the binary mixtures of monoalcohols, water and acetonitrile and for the reference files, Equation (3) yields better results for the mean standard deviation \overline{S} than Equations (4) and (5). Consequently, Equation (3) can be considered an adequate correlation equation for the study of the surface tension of liquid binary mixtures.

References

- A.N. Martin, Principios de Fisico-Química para Farmacia y Biología (Alambra, S.L, Madrid, 1967).
- [2] R. Voigt, Tratado de Tecnología Farmaceutica (Acribia, Zaragoza, 1982).
- [3] A. Dar, Tecnología Farmaceutica (S.A. Acribia, Zaragoza, 1979).
- [4] H.D. Crockford and B. Knight, Fundamentos de Fisico-Química (C.E.C.S.A., Madrid, 1968).
- [5] J. Swarbrik and J.C. Boyland, *Encyclopedia of Pharmaceutical Technology* (Marcel Dekker Inc., New York, 1993).
- [6] S. Glasstone, Tratado de Química Física (Aguilar, Madrid, 1970).
- [7] J.A. Riddick, W.B. Bunger, and T.K. Sakano, Organic Solvents: Physical Properties and Methods of Purification, 4th ed. (John Wiley and Sons, New York, 1986).
- [8] R. Miller, A. Hofmann, R. Hartmann, K.H. Schano, and A. Halbig, Advanced materials, Vol. 4, p. 370.
- [9] R. Belda, J.V. Herraez, and O. Diez, Phys. Chem. Liq. 42, 467 (2004).
- [10] T.M. Aminabhari, J. Chem. Eng. Data 29, 54 (1984).
- [11] A. Arce, A. Blanco, A. Soto, and I. Vidal, J. Chem. Eng. Data 38, 336 (1993).
- [12] G.C. Benson and O. Kiyohara, J. Solution Chem. 9, 791 (1980).
- [13] A. Piñeiro, P. Brocos, A. Amigo, M. Pintos, and R. Bravo, J. Chem. Thermodyn. 31, 931 (1999).
- [14] D.R. Lide, CRC Handbook of Chemistry and Physics, 73rd ed. (CRS Press, Boca raton FL, USA, 1992).
- [15] T. Herkovits and T.M. Kelly, J. Phys Chem. 77, 381 (1973).
- [16] S. Paez and M. Contreras, J. Chem. Eng. Data 34, 455 (1989).
- [17] A. Brent, A. Stacey, G. Carrie-Ellen, G. Kim, and R. Palepu, J. Solution Chem. 27, 827 (1998).
- [18] C.M. Romero and M.S. Páez, Phys. Chem. Liq. 44, 61 (2006).
- [19] J.J. Jasper, J. Phys Chem. Ref. Data 1, 841 (1972).
- [20] C.F. Beaton and G.F. Hewitt, *Physical property data for the Design Engineer* (Hemisphere Publishing Corp., New York, 1989).
- [21] G. Vazquez, E. Alvarez, and J.M. Navaza, J. Chem. Eng. Data 40, 611 (1995).
- [22] A. Martins, R. Laurent, and S.B. Aznarez, Eclectica Quim. 25, 41 (2000).
- [23] J.V. Herraez and R. Belda, J. Solution Chem. 33, 117 (2004).
- [24] J.V. Herraez and R. Belda, J. Solution Chem. 35, 1315 (2006).
- [25] T. Kahl, T. Wadewitz, and J. Winkelmann, J. Chem. Eng. Data 48, 1500 (2003).
- [26] R.C. Reid, J.M. Prausnitz, and T.M. Sherwood, *The Properties of Gases and Liquids* (MacGraw Hill, New York, 1977).
- [27] O. Redlich and A. Kister, Ind. Eng. Chem. 40, 345 (1948).
- [28] T. Savitha Jyostna and N. Satyanarayana, Ind. J. Chem. 44, 1365 (2005).
- [29] I.R. Grguric, M.L. Kijevcanin, B.D. Djordjevic, A.Z. Tasic, and S.P. Serbanobic, J. Serb. Chem. Soc. 68, 47 (2003).
- [30] E.A. Guggenheim, Thermodynamics (North-Holland, Amsterdam, 1967).
- [31] R. Strey, Y. Viisanen, M. Aratono, J.P. Kratohvil, Q. Yin, and S.E. Friberg, J. Phys. Chem. B 103, 9112 (1999).
- [32] J. Glinski, G. Chavepeyer, and J.K. Platten, J. Chem. Phys. 104, 8816 (1996).
- [33] H. Kahl, T. Wadewitz, and J. Winkelmann, J. Chem. Eng. Data 48, 1500 (2003).
- [34] W.K. By Sung, J. Mu Shik, R. Taikyue, and H. Eyring, Proc. Natl. Acad. Sci. USA 59, 336 (1968).
- [35] L. Segade, J. Jímenez de Llano, M. Domínguez-Pérez, O. Cabeza, M. Cabanas, and E. Jiménez, J. Chem. Eng. Data 48, 1251 (2003).
- [36] A. Piñeiro, P. Brocos, R. Bravo, and A. Amigo, Fluid Phase Equilbr. 182, 337 (2001).
- [37] S. Westmeir, Chem. Tech. 28, 350 (1976).
- [38] N. Saha, B. Das, and D.K. Harza, J. Chem. Eng. Data 40, 1264 (1995).